Metal profile gaskets

Solid **metal flat gaskets** are used in areas where, due to the medium, temperature, pressure and/or permitted leakage rate, soft-material or metal/soft-material gaskets are not particularly suitable. They have proven reliable at low temperatures of -200°C as well as at high temperatures of over 600°C. They are used at pressures ranging from relatively low to extremely high.

The thickness of the seal and the sealing material are generally dependent on the flange surface and the operating conditions. The better the flange surface in terms of surface quality and evenness, the thinner the gasket that can be used, e.g. 0.5-1 mm as a gasket in spinning nozzle fittings or 2-3 mm for aluminium gaskets in heat exchangers.

It should be noted that soft metals (such as aluminium or silver) need only relatively low surface pressures to become deformed, harder materials on the other hand, particularly steel, require high sealing pressure.

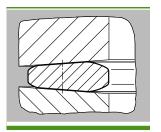
Gasket profiles

Profile	Cross-section
A1	

To reduce the sealing surfaces of gaskets with rectangular cross-section such as Profile A1, choose a convex cross-section shape. Information on this can be found in DIN 7603 at Form D.

The absolute level of the sealing press capacity can be reduced by using narrow gaskets instead of wide gaskets or harder metals galvanised with thin overlays of soft metal.

Coatings of copper, nickel, silver or tin up to a maximum of 100 μ m will give significantly better sealing properties and significantly lower deformation surface pressure σ_V . For the stated flange surface roughnesses a coating thickness of 35 to 50 μ m is sufficient.


In metal profile gaskets, a line contact arises first. The bolt loads are clearly lower compared to metal flat gaskets (Profile A1). With the rectangular profile A1, even a slight flange twist can lead to sealing problems. The sealing diameter in the middle of the gasket jumps to the size of the external diameter, causing the leverage to be adversely affected. The greater internal pressure also has a negative effect.

In **convex gaskets** on the other hand, the contact geometry is such that it is self-sealing at high internal pressures. The sealing diameter is retained and edge pressure is avoided.

Narrow gaskets are more heavily loaded at the same bolt force and can flow when insufficiently stable, leading to a loss of bolt load and leakages.

To avoid flowing when loaded or even a destruction of the entire gasket, narrow flat gaskets should be chambered if necessary, as is the case with flanges with tongue and groove faces. Even with a chambered specimen there can be damage to the gasket, particularly if the sealing material is sensitive to crevice corrosion. In this case, fitting in a groove can actually be disadvantageous. In order to prevent damage to the gasket, ensure that the maximum permitted surface pressure $\sigma_{\rm g}$ is not exceeded under any operating conditions.

Profiles A7 and H7 are centred by the corresponding shape of the flange e.g. male and female face joint. Gaskets of the type Profile H9 and H15 can also be used as high-pressure,

high-temperature gaskets with flanges with raised or flat face flanges. The gaskets are then centred on the bolts. Profile H15, with a loose centring ring, is ideal for use with gaseous media and/or centring ring with widths greater than 15 mm. Profiles H7, H9 and H15 have an osculating radius

R which is determined by the prevailing surface pressure.

Gasket profiles

Profile	Cross-section
A7	
H7	
H9	
H15	

 $Kempchen \ Dichtungstechnik \ GmbH \cdot Tel. \ +49 \ (0) 208 \ 8482 \ 0 \cdot Fax. \ +49 \ (0) 208 \ 8482 \ 285 \cdot info@kempchen. de \cdot www.kempchen. de$

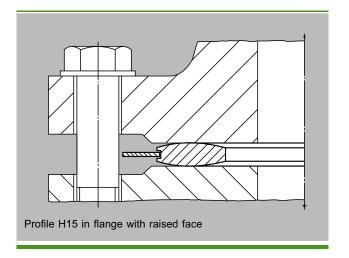
Metal profile gaskets

Flat ring gaskets and other special shapes produced using special tools are also available. To protect from corrosion, galvanised overlays are possible. In copper gaskets with corrosion protection layers of hard nickel, the covering layer is only a few μm , so that the sealing properties are affected as little as possible by the harder protective layer.

We produce gaskets in all commonly used metals. See also "Materials commonly used".

Convex gaskets made from metal are dimensioned as follows:

Oval flanges


O in accordance with DIN 71511

Sealing discs for connections to pressure gauges and associated valves

O in accordance with DIN 837

Union fittings

O in accordance with DIN 7603

For measurements see section "General Dimension Tables for DIN, ASME/ANSI, BS for flat gaskets"

Gasket limiting values

Profile		A1											
Materials			Iron (1.1003) RSt 28 (1.0326)	St35 (1.0308) St 38.8 (1.0305)	12CrMo195 (1.7362)	13CrMo44 (1.7335)	X6CrNiTi 18 10 (1.4541)	X15CrNiSi2012 (1.4828)	Nickel Ni 99,6 (2.4060) Ni 99,2 (2.4066)	Copper	aluminium	Fine silver 99,98 Ag	
Recommended max.	μm	from	1,6	1,6	1,6	1,6	1,6	1,6	1,6	3,2	12,5	6,3	
roughness of the flange	part.	to	3,2	3,2	3,2	3,2	3,2	3,2	3,2	6,3	25	12,5	
Surfaces pressure	N/mm²	$\sigma_{\rm v}$	235	265	400	300	335	400	190	135	70	50	
limits for 20 °C	14/111111	$\sigma_{\scriptscriptstyle{\vartheta}}$	525	600	900	675	750	900	510	300	140	160	
Surface pressure		$\sigma_{_{\scriptscriptstyle V}}$	235	265	400	300	335	400	190	135	-	50	
limits for 300 °C	N/mm ²	$\sigma_{\scriptscriptstyle{\vartheta}}$	315	390	730	585	630	750	480	150	-	135	

Gasket characteristic values

Profiles			A7 H7	, H9, H1	5							
Materials			Iron 1.1003	Heat-resistant mild steel 1.5415	Heat-resistant mild steel 1.7362	Stainless steel 1.4541	Stainless steel 1.4828	Steel St35 copper-plated	Stainless steel 1.4541silver- plated	Copper 2.0090	Monel 24360	
Recommended max. roughness of the flange	μm	from to	3,2 6,3	3,2 6,3	3,2 6,3	1,6 3,2	1,6 3,2	3,2 6,3	6,3 12,5	3,2 6,3	3,2 6,3	
Surface pressure limits for 20 °C	N/mm² N/mm²	$\sigma_{_{\!\vartheta}}$	235 525	300 675	400 900	335 750	400 900	135 600	100 750	135 300	260 660	
E modulus at 20 °C	kN/mm²		210	210	210	200	200	210	200	128	178	
Surface pressure limits for 300 °C	N/mm² N/mm²	$\sigma_{_{\! \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	235 315	300 585	400 730	335 630	400 750	135 390	100 630	135 150	260 650	
E modulus at 300 °C	kN/mm²		185	185	190	186	186	185	186	114	175	

 $Kempchen \ Dichtungstechnik \ GmbH \cdot Tel. \ +49 \ (0) 208 \ 8482 \ 0 \cdot Fax. \ +49 \ (0) 208 \ 8482 \ 285 \cdot info@kempchen. de \cdot www.kempchen. de$

